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Based on a dimensional consideration, the ‘ - 3 power law ’ on the spatial spec- 
trum of sand waves formed by flowing water S,,,(k) is derived for a large wave- 
number equilibrium subrange, 

8,,, ,(k) N ak-3, 

where a is a constant depending on the angle of repose of sand particles and k 
denotes the wave-number. 

Likewise, the frequency spectrum is shown to have the ‘ - 3 power law’ range 
for higher frequencies as well as the ‘ - 3 power law ’ range for frequencies near a 
spectral peak. 

These spectra are shown to agree with experimental data from various sources. 

1. Introduction 
Mechanism of fluvial sand movements has for many years been attracting 

the interest of not only hydraulicians, but also physicists, and many papers have 
been written on the problems such as the initiation of movement of sand particles, 
the suspension and transportation of sand and the formation of sand waves. 
Nevertheless, much remains to be solved. 

A recent problem which is arousing controversy is statistical properties of 
sand waves formed by flowing water. From experimental investigation, it 
became evident that the sand waves are composed of a wide range of frequency 
components, contrary to the seemingly rather regular pattern, and in higher 
frequency or wave-number ranges the sand-wave spectra plotted on log-log 
scale decrease almost linearly with increasing frequencies or wave-numbers. 
Nordin & Algert (1966) proposed a Markov second-order linear model which was 
further developed by Ashida & Tanaka (1967), while the writer (Hino 1968) has 
derived preliminarily the ‘ - 3 power law’ of sand-wave spectrum. 

Generally speaking, the dimensional consideration is an efficient tool for 
deriving spectral characteristics. One of the best known is Kolmogorov’s -I 
power law (Batchelor 1953) for the inertial subrange of turbulent velocity 
fluctuations. In  the inertial subrange where energy transfer is predominantly 
governed by the rate of energy dissipation E as well as by the wave-number k, 
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the molecular viscosity v contributing nothing, the spectrum of velocity fluctua- 
tions is expressed by 

where a is a universal constant named Kolmogorov constant. 
Phillips’s ‘ - 5 power law’ on the wind-wave spectrum in the equilibrium range 

(Phillips 1958) is also familiar to us. In  a well-developed sea generated by the 
wind, there is an equilibrium range of large wave-numbers (or high frequencies) 
in the spectrum, determined by the condition that the downward acceleration 
should not exceed the gravitational acceleration (9 ) .  Therefore, the spectrum is 
determined simply by g and angular frequencies (in radian/unit time) w or g and k. 

E ( k )  = adk-9, (1) 

@ ( w )  N bg2~-5 ,  
where b is a constant, and 

Y(K) f(8) k-4, 

where 8 is an angle specifying the direction of the vector wave-number K and 
f (8) is a certain function of 8. 

In  this paper, extending further the previous discussion, the writer shows that 
there exists an equilibrium subrange in the sand-wave spectrum. On a dimen- 
sional ground, the ‘ - 3 power law’ of the equilibrium spectrum is derived for large 
wave-numbers (or high frequencies). The result is compared with the experi- 
mental data. 

2. Dimensional analysis 
Wave-number spectrum 

In the first place, the instantaneous spatial characteristics of sand waves are 
discussed. 

Let r] denote an elevation of sand waves from the mean level of sand bed, x 
a distance in the downstream direction. The correlation functions of bed eleva- 
tion r] and slope r,~’ = dr]/dx are defined as follows, respectively, 

______ 
KJt) = r ] ( X ) r ] ( X  + 8 7  &f,,(t) = r]’(47’(x + t). (4) 

Kf,,(t) = - d 2 K , , ( ‘ w t 2 .  (5 )  

They are related to each other by 

The spectra of r , ~  and dr]/dx are expressed as two-sided Fourier transforms of K,, 
and K,.,., viz. m 

~,,(k) = 1 K,,(LJ e-iznkc d t ,  (6) 
-m 

and 
r m  

K,&E) = J S J k )  eizngkdk, 
--m 

where k is a wave-number in cyc/unit length, and similarly for ~9,~~~.  
In  the spectral representation, (5) reduces to 

(7) 
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In  the fully developed sand waves, the slope of sand beds can never exceed the 
angle of repose of sand particles, q5. In  fact, in the well-developed sand beds, 
there are observed the wave crests of surface configuration, i.e. the discon- 
tinuities of surface gradient which in the spectral terms correspond to the 
existence of a certain form of the spectrum of large wave-numbers. As a conse- 
quence, there would exist an equilibrium range where the spectral form is 
governed predominantly by q5 and the wave-number k. 

For lower wave-number or frequency regions, on the other hand, the instability 
mechanism between sand beds and water flowing over them (Cartwright 1959; 
Kennedy 1963) prevails, thus the law of equilibrium subrange fails a t  low wave- 
number. The mechanisms of sand-wave generation are similar to those of wind 
waves in the points that the instability and resonance mechanism proposed by 
Miles (1957) and Phillips (1957) prevails for low wave-number regions and the 
equilibrium spectrum (Phillips 1958) exists for higher wave-numbers. 

The function XTflT,(k) has the dimension of length and the angle of repose q5 is 
non-dimensional. Thus, for the equilibrium subrange, it follows immediately on 
dimensional grounds that 

xT.9.(k) = (2n)2a($)k-l (k, < k <&I), (9) 

where a($) is a certain function of q5. However, since q5 does not vary much, 
a($) may be treated as a constant. d is a diameter of sand particle and k, repre- 
sents the smallest wave-number of the wave field in which the interactional 
instability mechanisms are not important. 

From (8) and (9), the sand-wave spectrum for the equilibrium range is derived 
as 

(10) Sv7/(k) = a(q5)k-3 (k, < k < a-1). 

Frequency spectrum 
Almost the same discussion holds for the frequency spectra of the elevation 7 as 
well as of the rate of temporal change of bed configuration at  a point of observa- 
tion 4 = aq/at which are symbolized by PV7( f )  and P++( f ), respectively. 
P,,(f) is related to P++( f )  as 

eJf) = P++(f )/(W 12, (11)  

where f denotes the frequency in unit of cyc/unit time. 
Now, the change of bed configuration continues as long as the bed material 

moves. The movement of sand bed is predominantly determined by the shear 
velocity U, or the bottom shear stress 7,. Factors such as the densities of water 
and sand particle (p, and pJ, the size of sand particle d and the gravitational 
acceleration g are also to be considered in the dimensional analysis. As well known 
in the theory of the critical tractive force, however, these factors will always 
appear as a non-dimensional group in the form of @ = U$/([p,/p,] - 1)gd. Then, 
the frequency spectra of sand waves in the equilibrium subrange are given in the 
following forms, 

(12) P+j&f) = (24”f,(@) u*2f-1 Cfl < f < f m )  
and PT?Jf) = f,($) 77*2f-3 (f, < f < f m ) ,  (13) 
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where fi and f a  mean the lower and the upper frequency boundaries of the equi- 
librium subrange in the frequency spectra, respectively, and f n ($ )  is a certain 
function of $. 

102 = 
8 =  
6 -  
4 -  

2 -  

- 

10 = 
8 z  
6 -  
4 
- 

I I I I I I I I I  I I 1 1 1 1 1 1 1  

2 4 6 2 4 6 810-22 4 6 810-I 
k (cyc/cm) 

FIGURE 1. Wave-number spectra of sand waves compared with the ' - 3 power law, (10). 
(Curves are replotted from the graphs by Nordin & Algert (1966).) 

The velocity of sand-wave movements c(k)  is generally related to Ic and f as 

f = c(k)Ic. (14) 

(15) 

On the other hand, PTT( f )  and STv(k)  have a relation that 

PTT(f) = Sv7(k)  (dk ld f  1. 
Therefore, in order that the two spectral forms (10) and (13) derived on the 
dimensional ground are consistent with each other, the velocity of sand-wave 
movement c ( k )  needs to have a constant value irrespective of wave-number k ,  

c2(1c) = f n ( 9 )  U*'/a* (16) 
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However, in the lower wave-number ranges, interactions between the sand 
waves and the water flowing over them become appreciable to consider c(k)  

1 0 - ~  z 4 6 8 lo-' 2 4 6 8 lo-' 

k (cyclcm) 
FIGURE 2.  Wave-number spectra of sand waves by Ashida & Tanaka (1967) compared 
with the '- 3 power law' prediction, (10). (The scales of ordinate of the original figures 
are reduced by a factor ten, because values of variances of elevation r2 obtained by the 
integration of the spectra are larger just by a factor ten than the values of v2 = listed 
in table 2 of their original paper which are reasonable values from o w  experience.) 

where h means the depth of flow. As a first approximation when k is large enough 
compared with 1 / ( 2 ~ h ) ,  c ( k )  is represented by 

- 

c (k )  = y k  
where y is a constant. 
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On the other hand, from the mechanism of sand-wave movements, it will be 
readily appreciated that the equilibrium range of spatial spectrum extends for 
far lower wave-numbers than for the equilibrium range of frequency spectrum. 
Then, from (lo), (la), (15) and (18), the frequency spectrum Pn,(f) for a relatively 

I ,  

lower frequency region is described as 

p?)?)(f) = B4$)rf-2 ( f o  < f < fi). 
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FIGURE 3. Wave-number spectra of sand waves by Fukuoka (1968) compared with the 
' - 3 power law' prediction, (10). Crosses in the figure are mean values of five data and a 
solid curve represents the ' - 3 power law'. 

3. Comparisons with experimental data 
Recently some precise experimental data on the spectral properties of sand 

waves have been published by Nordin & Algert (1966), Ashida & Tanaka (1967) 
and Fukuoka (1968). These data are shown in figures 1 to 4 compared with the 
theory just derived above. The characteristic features of experimental conditions 
are given in table 1. Except runs 6 and 7 of Rio Grand Conveyance Channel by 
Nordin & Algert, all of them are obtained from laboratory experiments. Runs 
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4 and 5 by Fukuoka are performed under somewhat artificial conditions. At the 
upstream end of the channel) surface waves generated by a vibrating horizontal 
bar are imposed to form a considerably ruffled stream. 

Although the experiments cover relatively wide hydraulic conditions of 
channel dimensions, sand diameters, channel slopes and bed configurations, the 
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lo-’ 2 4 6 8 10-1 2 4 6 

f (cyclmin) 
by Ashida & Tanaka compared with (13) 

.9). 

spectral form of the - 3 power law’ exists for a wide range of high wave-numbers 
and frequencies. The lower limit of frequency of the power law depends quite 
strongly on the channel dimensions. From table L and figure 5 a rough estimation 
of Ic, is derived as 

or an estimation of the wavelength of a prevailing sand wave, Lo, is given by 
Ic, 1: 0*15/h, (20) 

Lo N 7h. (21) 

The proportionality constant a($), being affected by the angle of repose of 
sand, scatters as given in table 1. The values of the constant determined from 
Japanese data coincide with each other in spite of the differences in the sand 
diameter and bed configurations. The mean value of these data, except runs 6 
and 7 by Nordin and Algert, is 2.8 x giving the following spectral function 
in the average s7,(lc) = 2.8 x 10-4k-3. (22) 

Data on the frequency spectrum are too scarce to derive any conclusive results. 
However, the frequency spectra (figure 4) by Ashida & Tanaka give a good 
support to both the ‘- 3 power law’ range, (13), and the ‘- 2 power law’ range, 
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(19). It is also shown that the spectrum of ripples (figure 4 b )  follows largely the 
‘-2powerlaw’. 

10-1 L 

h (em) 
FIGURE 5. Relation between the lower limit wave-number lc, of the ‘- 3 power law’ and 

the depth of flow h. 
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